

I BUCHI DI TENSIONE SONO LA CAUSA PRINCIPALE DI MALFUNZIONAMENTI DELLE APPARECCHIATURE NELL'INDUSTRIA AUTOMATIZZATA

OXYGEN SAG COMPENSATOR

LA TENSIONE NON È MAI PERFETTA

L'industria moderna sta diventando sempre più automatizzata e la **sensibilità** dei processi industriali al **Power Quality** è in continuo aumento. Le carenze di Power Quality possono provocare problemi e danneggiamenti alle apparecchiature, fino a interrompere il ciclo produttivo nei casi più gravi. Nel punto di connessione alla rete, l'energia prelevata, pur nell'ambito delle prescrizioni normative, può non essere ottimale all'utilizzo. Acquistiamo l'energia senza poterne negoziare la qualità che ci serve. **Prezzo** e **qualità** dell'energia sono spesso aspetti complementari; insieme definiscono il valore attribuito al consumo di energia elettrica. In pratica **la tensione non è mai perfetta**.

60%

DEI COSTI DI POWER

QUALITY SONO UNA

CONSEGUENZA DEI

BUCHI DI TENSIONE

Se la qualità dell'elettricità fornita agli impianti scende al di sotto di un certo livello, le apparecchiature non funzionano più correttamente ed è probabile che si verifichino problemi. L'incidenza totale dei **costi** imputabili a cattivo **Power Quality** è fino al **4% del fatturato annuo** dell'azienda, con circa il **60% di tali costi causati dai buchi di tensione (SAG)** e interruzioni brevi (fonte: Leonardo Energy).

L'impatto sul processo produttivo di un buco di tensione è solitamente inferiore a quello di un'interruzione, sia breve che lunga, ma i buchi di tensione sono molto più frequenti. L'interruzione colpisce tutte le apparecchiature (se non protette) mentre un buco di tensione, a seconda della profondità e della durata, può avere lo stesso effetto oppure interessare solo le utenze più sensibili.

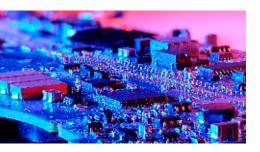
OXYGEN SAG Compensator

In molte aziende l'ottimizzazione del processo produttivo si può ottenere con la stabilizzazione della tensione e la compensazione dei buchi di tensione.

In questi casi, soprattutto se le potenze in gioco sono importanti, le apparecchiature con back up energetico, tipicamente si usano UPS, sono inutilmente costose e ingombranti, a causa della dotazione di batterie (costi di manutenzione) e dei rendimenti non elevatissimi (costo dell'energia dissipata).

In questi casi la soluzione ottimale è il "SAG compensator".

LA SOLUZIONE



APPLICAZIONI

I buchi e le interruzioni di tensione disturbano molti tipi di dispositivi collegati alla rete e sono la causa più frequente di problemi di qualità dell'alimentazione.

Le applicazioni più sensibili sono:

INDUSTRIA ELETTRONICAMacchinari sensibili,
semiconduttori.

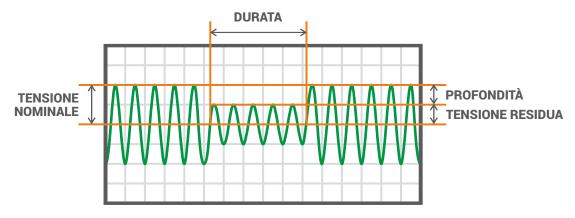
FOOD & BEVERAGEImbottigliamento ad alta velocità, linee di confezionamento.

LINEE DI PRODUZIONE CONTINUA Stampa, acciaierie, cartiere, petrolchimica, fibre, automotive.

MEDICALEApparecchiature mediche sensibili, ospedali.

FARMACEUTICOClimatizzazione.

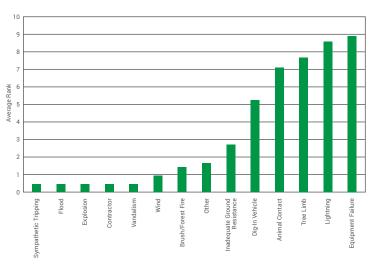
INFORMATICA, DATA CENTERBanche, telecomunicazioni.



IL BUCO DI TENSIONE INIZIA QUANDO LA TENSIONE SI ABBASSA SOTTO IL 90% DELLA TENSIONE NOMINALE E FINISCE QUANDO TORNA SOPRA TALE VALORE

I BUCHI DI TENSIONE SONO IMPREVEDIBILI E CASUALI

COS'È UN BUCO DI TENSIONE?


Riduzione temporanea della tensione nominale al di sotto di una soglia specifica in un punto della linea di alimentazione elettrica (Norma CEI EN 50160).

Un buco di tensione si verifica quando la tensione residua si riduce a valori compresi tra il 90 e il 5 per cento della tensione nominale. La durata del buco di tensione è considerata tra 10ms fino a 1 minuto. La maggior parte dei buchi di tensione ha una durata inferiore a 1 secondo e una tensione residua superiore al 40% del valore nominale.

CAUSE DEI BUCHI DI TENSIONE

I buchi di tensione sono generalmente originati da guasti nella rete pubblica o negli impianti degli utenti della rete, in qualche caso dai sovraccarichi transitori dovuti allo spunto di grossi motori o inserzione di grossi carichi.

Cause dei buchi di tensione, fonte EPRI, Electric Power Research Institute.

Gli azionamenti dei motori, compresi i variatori di velocità, sono particolarmente sensibili. Anche le apparecchiature di elaborazione e controllo dati sono molto sensibili ai buchi di tensione e possono subire perdite di dati e tempi di fermo prolungati.

ORIGINE DEI BUCHI DI TENSIONE

- Il buco di tensione si propaga dai livelli di tensione maggiori a quelli inferiori. Spesso il carico è connesso a un livello di tensione inferiore rispetto a quello in cui il buco viene generato.
- I quasti in rete causano buchi di tensione più profondi se si verificano vicino ai carichi.
- Secondo uno studio CESI l'incidenza dei buchi di tensione è di gran lunga maggiore in caso di rete MT aerea piuttosto che con cavi sotterranei.

PERCHÉ SONO IMPORTANTI I BUCHI DI TENSIONE

Più l'apparecchiatura è moderna e più elettronica è richiesta, più gravi sono i problemi causati dai buchi di tensione. Con il crescente numero di impianti di generazione a energia rinnovabile, aumentano i buchi di tensione, le fluttuazioni e le deviazioni di frequenza.

Esempi di costi dovuti ai buchi di tensione:

- Costi per personale improduttivo causati dalla discontinuità del ciclo di lavorazione.
- Costi per materie prime irrimediabilmente perse.
- Costi per danni e/o malfunzionamento dei macchinari (riparazione, noleggio temporaneo).
- Penalità causate da conseguenti inadempienze contrattuali.
- Sanzioni per danni all'ambiente.
- Aumento dei costi generali di assicurazione.

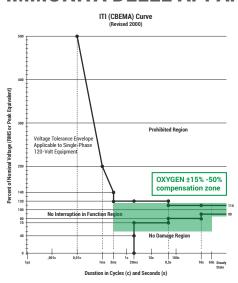
I COSTI CAUSATI DA UN BUCO DI TENSIONE SONO INFERIORI A QUELLI DI UN'INTERRUZIONE MA I BUCHI DI TENSIONE SONO MOLTO PIÙ FREQUENTI

CLASSIFICAZIONE DEI BUCHI DI TENSIONE

I buchi di tensione vengono classificati in base alla tensione residua e alla durata, secondo la norma CEI EN 50160:

Tensione residua u [%]	Durata t [ms]								
	10 ≤ t ≤200	200 ≤ t ≤ 500	500 ≤ t ≤ 1000	1000 ≤ t ≤ 5000	5000 ≤ t ≤ 60000				
90 > u ≥ 80	CELLA A1	CELLA A2	CELLA A3	CELLA A4	CELLA A5				
80 > u ≥ 70	CELLA B1	CELLA B2	CELLA B3	CELLA B4	CELLA B5				
70 > u ≥ 40	CELLA C1	CELLA C2	CELLA C3	CELLA C4	CELLA C5				
40 > u ≥ 5	CELLA D1	CELLA D2	CELLA D3	CELLA D4	CELLA D5				
5 > u	CELLA X1	CELLA X2	CELLA X3	CELLA X4	CELLA X5				
Buchi sopportabili da apparecchiature di classe 2 e 3.									

Le classi 2 e 3 sono definite dalle norme EN 61000-4-11 e EN 61000-4-34.


Buchi sopportabili da apparecchiature di classe 3.

LA MAGGIORANZA DEI BUCHI DI TENSIONE HA UNA DURATA INFERIORE A UN SECONDO E UNA TENSIONE RESIDUA SUPERIORE AL 40%

QUANTI BUCHI DI TENSIONE HO?

Come previsto dall'Autorità di Regolazione per Energia Reti e Ambiente (già AEEGSI), il distributore fornisce la tabella di sintesi e quella di dettaglio dei buchi di tensione registrati sulla semi sbarra MT di Cabina Primaria che alimenta il POD del cliente. Visione dei buchi dell'anno precedente previa registrazione sul portale di e-distribuzione.

IMMUNITÀ DELLE APPARECCHIATURE AI BUCHI DI TENSIONE

Il grafico CBEMA (associazione dei costruttori di dispositivi elettronici di consumo) e ITIC (Information Technology Industry Council) mostra le aree di tollerabilità delle apparecchiature alle variazioni di tensione e le aree problematiche.

LE PROBLEMATICHE NASCONO:

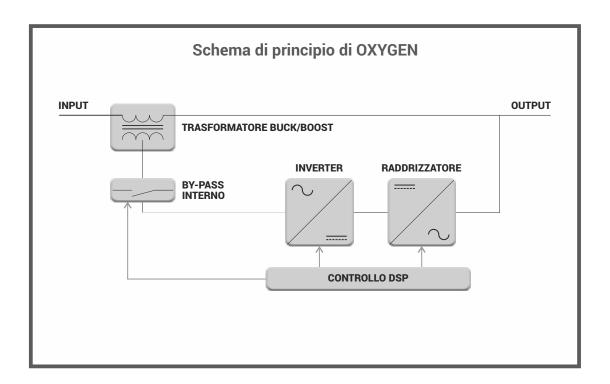
- SOTTO IL 90% DELLA TENSIONE NOMINALE A PARTIRE DA UNA DURATA DI 10 secondi
- SOPRA IL 110% DELLA TENSIONE NOMINALE A PARTIRE DA UNA DURATA DI 0,5 secondi (CBEMA)

OXYGEN | SAG Compensator

Oxygen, grazie ad un adeguato dimensionamento dei componenti di potenza e a una notevole velocità di risposta (<3 millisecondi) è in grado di risolvere i buchi di tensione della durata massima di un minuto. L'energia richiesta viene prelevata direttamente dalla rete.

I modelli attuali sono in grado di coprire i buchi di tensione fino al 50% del valore nominale (-50%). La **compensazione di tensione** sull'avvolgimento primario del trasformatore buck/boost viene eseguita da interruttori statici **IGBT** controllati da un microcontrollore. Il sistema di microcontrollori controlla la tensione di uscita e determina l'apertura o la chiusura degli IGBT garantendo la migliore regolazione. L'utilizzo della **tecnologia a doppia conversione** garantisce l'isolamento dai disturbi e dalle distorsioni della rete e, insieme all'utilizzo dei condensatori elettrolitici, consente di realizzare macchine per carichi elevati.

Il SAG Compensator può operare con un **intervallo di variazione del carico** per ciascuna fase da **0 a 100%**, **non è influenzato dal fattore di potenza del carico** e può funzionare con o senza il neutro. **Oxygen** può funzionare con diverse tensioni di ingresso e, di conseguenza, di uscita (380V o 415V) rispetto a quella nominale (400V).


I componenti principali sono:

- Schede elettroniche basate su microcontrollore IGBT che gestiscono il sistema in termini di regolazione e gestione degli allarmi. Esse confrontano il valore della tensione di uscita con quello impostato: se viene rilevata una differenza, generano la compensazione necessaria per riportare la tensione di uscita al valore nominale (a condizione che detta differenza cada nell'intervallo di lavoro).
- Unità di conversione (raddrizzatore CA / CC e inverter CC / CA):
- Raddrizzatore: converte la tensione fase-neutro della rete CA in corrente continua mediante un ponte IGBT completamente controllato. Il raddrizzatore è dimensionato per alimentare l'inverter a pieno carico.
- *Inverter:* converte la tensione continua proveniente dal raddrizzatore in tensione alternata, stabilizzata in ampiezza. L'inverter utilizza la stessa tecnologia IGBT del raddrizzatore.
- Interruttore statico di by-pass interno che consente l'alimentazione del carico in caso di guasto.
- **Trasformatore buck/boost** per aggiungere o sottrarre la tensione necessaria per compensare le fluttuazioni della rete.

- Touch Display.

L'interfaccia utente viene creata utilizzando un "touch display" (10") multilingue; attraverso il menu di selezione è possibile visualizzare i valori elettrici e impostare i parametri operativi dello stabilizzatore. È anche possibile comunicare con il componente elettronico tramite il **bus seriale RS485** utilizzando il protocollo **Modbus RTU**.

L'armadio standard è metallico con colore RAL9005 e grado di protezione IP21.

VANTAGGI

Protezione dal principale problema di Power Quality.

I buchi di tensione sono la principale causa dei malfunzionamenti delle apparecchiature nell'industria automatizzata. Correzione dei buchi di tensione fino a -50% per 1 minuto.

Soluzione economica: nessun costo per manutenzione e funzionamento.

Non sono necessarie batterie di accumulo. Efficienza >98% alla potenza nominale.

Rispetto ad un UPS, la soluzione OXYGEN è specifica per i buchi di tensione e non per le interruzioni con vantaggi:

- di costo
- di manutenzione
- di spazio
- di climatizzazione: non necessità di apposita sala condizionata

CARATTERISTICHE

EFFICIENZA

>98% alla potenza nominale.

DESIGN INDUSTRIALE

Progettato per carichi industriali standard con ammesso sovraccarico del 150% per 1 minuto (alla tensione di ingresso nominale).

COSTRUZIONE MODULARE

Manutenzione semplice e veloce.

SENZA ACCUMULATORI DI ENERGIA

Minima manutenzione e maggiore affidabilità.

CORREZIONE DEI BUCHI DI TENSIONE FINO A -50% CON REGOLAZIONE CONTINUA ±10%, ±15%

Correzione in meno di 3 millisecondi.

BY-PASS INTERNO

Interruttore statico interno che consente l'alimentazione del carico in caso di guasto.

CONNETTIVITÀ

Modbus RTU.

DISPLAY TOUCH SCREEN MULTILINGUE

Facile da utilizzare con semplici controlli utente e registro eventi.

GAMMA

	Range variazione tensione ingresso	Potenza	Range tensione ingresso	Corrente ingresso massima (picco)	Tensione uscita ±0.5%	Corrente	Rendimento	Tempo di correzione	Dimensioni custodia*	Peso*
Tipo	[%]	[kVA]	[V]	[A]	[V]	[A]	[%]	[ms]	[LxPxH]	[kg]

Compensazione della tensione in ingresso: ±10% continuo / -40% per 1 minuto (100% tensione nominale di uscita)

200-10-40	±10(-40%)	200	360-440	321(481)	400	289	>98	<3	1200x800x2000	800
250-10-40	±10(-40%)	250	360-440	401(601)	400	361	>98	<3	1200x800x2000	900
320-10-40	±10(-40%)	320	360-440	513(770)	400	462	>98	<3	1200x800x2000	1150
400-10-40	±10(-40%)	400	360-440	642(962)	400	577	>98	<3	1200x1000x2200	1200
500-10-40	±10(-40%)	500	360-440	802(1203)	400	722	>98	<3	1200x1000x2200	1400
630-10-40	±10(-40%)	630	360-440	1010(1516)	400	909	>98	<3	2600x1000x2200	1600
800-10-40	±10(-40%)	800	360-440	1283(1925)	400	1155	>98	<3	2600x1000x2200	1800
1000-10-40	±10(-40%)	1000	360-440	1604(2406)	400	1443	>98	<3	4200x1000x2200	2100
1250-10-40	±10(-40%)	1250	360-440	2005(3007)	400	1804	>98	<3	4200x1000x2200	2300
1600-10-40	±10(-40%)	1600	360-440	2566(3849)	400	2309	>98	<3	4800x1400x2400	3200
2000-10-40	±10(-40%)	2000	360-440	3208(4811)	400	2887	>98	<3	4800x1400x2400	3600
2500-10-40	±10(-40%)	2500	360-440	4009(6014)	400	3609	>98	<3	4800x1400x2400	4000
3200-10-40**	±10(-40%)	3200	360-440	5132(7698)	400	4619	>98	<3	4800x1400x2400	5000

I valori in tabella sono riferiti a una tensione nominale pari a 400V

Compensazione della tensione in ingresso: ±15% continuo / -50% per 1 minuto (100% tensione nominale di uscita)

200-15-50	±15(-50%)	200	340-460	340(577)	400	289	>98	<3	1200x800x2000	1150
250-15-50	±15(-50%)	250	340-460	425(722)	400	361	>98	<3	1200x1000x2200	1200
320-15-50	±15(-50%)	320	340-460	543(924)	400	462	>98	<3	1200x1000x2200	1400
400-15-50	±15(-50%)	400	340-460	679(1155)	400	577	>98	<3	2600x1400x2200	1600
500-15-50	±15(-50%)	500	340-460	849(1443)	400	722	>98	<3	2600x1400x2200	1800
630-15-50	±15(-50%)	630	340-460	1070(1819)	400	909	>98	<3	2600x1400x2200	1900
800-15-50	±15(-50%)	800	340-460	1359(2309)	400	1155	>98	<3	4200x1000x2200	2300
1000-15-50	±15(-50%)	1000	340-460	1698(2887)	400	1443	>98	<3	4800x1400x2400	3200
1250-15-50	±15(-50%)	1250	340-460	2123(3609)	400	1804	>98	<3	4800x1400x2400	3600
1600-15-50	±15(-50%)	1600	340-460	2717(4619)	400	2309	>98	<3	4800x1400x2400	4000
2000-15-50**	±15(-50%)	2000	340-460	3396(5774)	400	2887	>98	<3	4800x1400x2400	5000

I valori in tabella sono riferiti a una tensione nominale pari a 400V

Accessori opzionali

Interruttore automatico in ingresso

Protezione di corto circuito in uscita

Linea di by-pass manuale

Trasformatore di isolamento in ingresso

Filtri EMI/RFI

 $Tutte \ le apparecchiature ORTEA sono progettate e costruite in conformità alle Direttive Europee Bassa Tensione e Compatibilità Elettromagnetica concernenti i requisiti per la marcatura CE.$ I prodotti ORTEA sono costruiti con materiali di qualità idonea e tramite procedure costruttive costantemente verificate secondo i Piani di Controllo della Qualità dei quali l'Azienda è dotata in ottemperanza alla Norma ISO 9001. L'attenzione verso le tematiche ambientali e sulla sicurezza sul lavoro è garantita dalla certificazione del Sistema di Gestione secondo le Norme ISO 1400 l'e OHSAS 18001.
Per scopi migliorativi, ORTEA SpA si riserva la facoltà di modificare il prodotto descritto in questo documento in qualsiasi momento e senza preavviso. Pertanto, dati tecnici e descrizioni non

^{*} Dimensioni e pesi possono variare

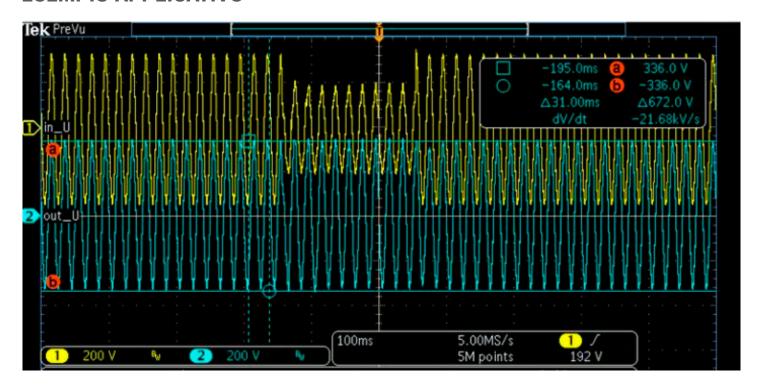
^{**} Disponibile solo per 480V / 60Hz

^{*} Dimensioni e pesi possono variare

^{**} Disponibile solo per 480V-460V / 60Hz

CARATTERISTICHE TECNICHE

INODESCO									
INGRESSO	200 400 415\//440	2.460.400\/.aala.a.60\\=\							
Tensione nominale disponibile* Tensione di alimentazione massima	380-400-415V (440-460-480V solo a 60Hz) Massima tensione continua +10%								
	50Hz ±5% o 60Hz :								
Frequenza Sistema di alimentazione		conduttore di neutro su richies	+-)						
Sistema di alimentazione	TITIASE + IN (SEIIZA	conductore ar neutro su richies	la)						
USCITA									
Tensione	Como la tanciona r	nominale di ingresso (può varia)	ro eu richioeta)						
Variazione di carico ammissibile	Fino al 100%	iorninale ur irigresso (puo variai	re su ricillesta)						
Sbilanciamento di carico ammissibile		50%							
Sovraccarico ammissibile 150% per 1 minuto (alla tensione nominale di ingresso)									
Joviaccarico ammissibile	130% per 1 111111ate	dia terisione norminale di ingri	c330 <i>j</i>						
PRESTAZIONI									
Rendimento	>98%								
Velocità di correzione	<3 millisecondi								
Precisione della tensione in uscita	±0.5%								
Precisione della correzione del buco	±4%								
Gamma di regolazione continua		%, Oxygen 15-50: ±15%							
Capacità di correzione del buco	Ingresso	Uscita	Тетро						
Oxygen 10-40	-40%	100%	1 minuto						
	-50%	90%	45 secondi						
	-60%	80%	36 secondi						
Oxygen 15-50	-50%	100%	1 minuto						
	-60%	90%	45 secondi						
BY-PASS INTERNO									
Capacità di by-pass	150% del valore no	minale							
Tipologia	Interruttore a tiristo	ori							
TRASFORMATORE BUCK/BOOST									
Tipo	Trasformatore a se	ecco							
Frequenza	50Hz o 60Hz								
AMBIENTE									
Temperatura ambiente	da 0°C a 40°C (da 3	32°F a 104°F)							
Altitudine	<1000m senza ded	classamento (per altitudini supe	eriori contattateci)						
Raffreddamento inverter	Ventilazione forzat	а							
Raffreddamento trasformatore	Convezione natura	le							
Massima umidità relativa	<95% (senza condensa)								
Grado di inquinamento	2								
ARMADIO									
Grado di protezione	IP21 (altri su richie	sta)							
Materiale	Acciaio zincato								
Finitura	Verniciatura a polv	ere epossidica							
Colore	RAL 9005								
Accesso interno	Porte a battente co	on serratura a chiave							


^{*} La tensione di uscita può essere regolata scegliedo **uno** dei valori indicati. Tale scelta determina il nuovo valore nominale di riferimento per tutti i parametri dello stabilizzatore.

MANUTENZIONE	
Diagnostica	Registro eventi (non volatile)
INTERFACCIA UTENTE	
НМІ	Display touch screen 10" multilingua
Pannello touch	Controllo completo dei parametri, registro eventi di sistema
Duplicazione remota	Su richiesta tramite software dedicato collegato alla stessa rete (Ethernet)
Comunicazione	Modbus RTU (Modbus TCP su richiesta)
CONTROLLO EVENTI DI POWER QUA	ALITY
Eventi registrati	Buco di tensione
Eventi rilevati	Sulla tensione di ingresso
Soglia evento	Valore inferiore della regolazione continua della tensione
NORME E CERTIFICAZIONI	
Qualità	ISO9001
Ambiente	IS014001
Salute e sicurezza	OHSAS18001
Marcatura	CE
	IEC 61439-1/2

ESEMPIO APPLICATIVO

Giallo: senza Oxygen | Sag compensator

Blu: con Oxygen | Sag compensator

Le aziende sono sempre più sensibili ai problemi di Power Quality, questi infatti possono causare malfunzionamenti e danni alle apparecchiature.

Le nostre soluzioni di Power Quality:

STABILIZZATORI DI TENSIONE COMPENSATORI DI BUCHI DI TENSIONE **TRASFORMATORI** OTTIMIZZATORI DI TENSIONE SISTEMI DI RIFASAMENTO FILTRI ATTIVI PER ARMONICHE

ORTEA SpA

Via dei Chiosi, 21 20873 Cavenago di Brianza MB I ITALY tel. +39 02 95 917 800

www.ortea.com

sales@ortea.com

Il presente documento è proprietà riservata di ORTEA SpA:

è fatto obbligo di informare gli uffici centrali dell'Azienda e richiedere autorizzazione prima di procedere con qualsiasi rilascio o riproduzione. ORTEA SpA non sarà ritenuta perseguibile o responsabile in alcun modo a seguito di copie, alterazioni o aggiunte non autorizzate apportate al testo o alle parti illustrate del presente documento. Qualsiasi modifica che riguardi il logo della società, i simboli delle certificazioni, denominazioni e dati ufficiali è severamente proibita.

Per scopi migliorativi, ORTEA SpA si riserva la facoltà di modificare il prodotto descritto in questo documento in qualsiasi momento e senza preavviso. Pertanto, dati tecnici e descrizioni non hanno alcun valore contrattuale.